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Abstract

Automatically segmenting anatomical structures from 3D brain MRI images is an important task 

in neuroimaging. One major challenge is to design and learn effective image models accounting 

for the large variability in anatomy and data acquisition protocols. A deformable template is a type 

of generative model that attempts to explicitly match an input image with a template (atlas), and 

thus, they are robust against global intensity changes. On the other hand, discriminative models 

combine local image features to capture complex image patterns. In this paper, we propose a 

robust brain image segmentation algorithm that fuses together deformable templates and 

informative features. It takes advantage of the adaptation capability of the generative model and 

the classification power of the discriminative models. The proposed algorithm achieves both 

robustness and efficiency, and can be used to segment brain MRI images with large anatomical 

variations. We perform an extensive experimental study on four datasets of T1-weighted brain 

MRI data from different sources (1,082 MRI scans in total) and observe consistent improvement 

over the state-of-the-art systems.
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Introduction

In neuroimaging studies, brain MRI segmentation is often a critical preprocessing step. 

Automated segmentation enables morphometric analysis of cortical and subcortical 

structures in large datasets (Fischl et al. 2002), a scenario in which manual labeling is 

impractical. The automatically segmented regions can be used to extract informative 

characteristics of structures, such as volumes and shape. In the clinic, these features have the 

potential to be used to evaluate the condition of a subject. Moreover, the identified 

boundaries between cortical and subcortical structures can aid the planning of brain surgery 

(Wels et al. 2009). In neuroscience research, statistics derived from the segmentations of 

control and experimental groups can be used to identify structural differences between them. 

In the context of disease studies, such differences can lead to the identification of new 

pathological biomarkers. For instance, the atrophy and morphological change of 

hippocampus have been identified as important markers for Alzheimer’s disease (Jack et al. 

2008).

Several practical segmentation methods are widely used in neuroimaging studies, e.g. Caret 

(2001), FreeSurfer (2002), FSL (2002), ITK-SNAP (2006), SPM (2003), and the 

segmentation utilities in 3D Slicer (Pieper et al. 2006). However, robustness against 

variations in the input imaging data remains an open problem. The main difficulties are due 

to: (1) variations in image intensities due to differences in MRI acquisition (hardware, pulse 

sequence, imaging parameters); (2) anatomical variations within and across populations. 

Intensity normalization and image registration (Hou 2006; Klein and et al. 2009) can be used 

to standardize the images prior to segmentation, but only to some extent, since many of the 

variations are intrinsic.

In this paper, we aim to build a robust system that automatically segments T1-weighted 

brain MRI volumes into anatomical sub-cortical and cortical structures. We approach the 3D 

brain image segmentation problem from a statistical modeling perspective, combining a 

generative and a discriminative model with feature augmentation and adaptation. Generative 

and discriminative models were first explored and compared in the machine learning and 

computer vision literatures (Ng and Jordan 2002; Tu 2007). It has been shown that, while 

generative models outperform discriminative models when the size of the training dataset is 

small, the latter often have a better asymptotic behavior (Liang and Jordan 2008). Works that 

attempt to combine both types of model include (Jebara 2003; Raina et al. 2003; Lasserre et 

al. 2006; Holub et al. 2008), which show that integrating the two types of models can be 

beneficial.

Specifically, the goal of brain MRI segmentation is to separate the voxels of an input scan 

into a number of classes. In some studies, these classes correspond to the three basic tissue 

types in the brain: gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF) 

(Wells et al. 1996; Pham and Prince 1999; Leemput et al. 2001; Shattuck et al. 2001; Wu and 

Chung 2005; Bazin and Pham 2007; Li and Fan 2008). Other works have attempted to 

produce labels at the level of brain structures (e.g., hippocampus, pallidum, putamen, etc.) 

(Fischl et al. 2002; Scherrer et al. 2007; Klauschen et al. 2009; Bazin and Pham 2009), 

which is a more difficult problem but yields a richer description of the data.

Liu et al. Page 2

Neuroinformatics. Author manuscript; available in PMC 2018 May 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



To produce these labels, generative models typically rely on two components: a prior term 

that summarizes the statistical frequency and spatial distribution of labels and a likelihood 
term that models how these labels translate into intensities. Then, Bayesian inference can be 

used to estimate which labels (i.e., which segmentation) are the most likely given the 

observed image intensities. The prior term is usually in the form of a statistical atlas 

endowed with deformation model (Ashburner and Friston 2005; Leemput et al. 2001; Fischl 

et al. 2002). Other priors include the use of principal component analysis (PCA) to model 

whole shape variations (Pohl et al. 2006; Yang et al. 2004) or Markov random fields (MRF) 

to impose local shape constraints (Fischl et al. 2002; Woolrich and Behrens 2006; Scherrer 

et al. 2009; Caldairou et al. 2011). For the likelihood term, Gaussian distributions or 

mixtures thereof have been predominant in the literature, due to their ease of inference 

(Fischl et al. 2004; Yang et al. 2004; Pizer et al. 2003; Corso et al. 2008). Because the 

Gaussian parameters (means and variances) are estimated during the optimization, these 

algorithms are robust against changes in MRI contrast. Moreover, they can also explicitly 

model image artifacts such as the MRI bias field, making them robust against them as well 

(see for instance Leemput et al. (2001)).

Recently proposed multi-atlas methods such as Gouttard (2007), Wu and Chung (2008), 

Klein et al. (2009), Aljabar et al. (2007), Heckemann et al. (2006), Wolz et al. (2009), Bazin 

and Pham (2009), and Sabuncu et al. (2010) can also be seen as generative models. These 

methods are based on deforming a number of labeled templates to a test scan, and then 

fusing the deformed labels into a single, enhanced estimate of the segmentation. As 

explained in Sabuncu et al. (2010), these algorithms can be interpreted as generative models 

in which the intensity and label of each voxel are taken from one of the deformed templates 

as indexed by a latent, discrete field.

Discriminative models attempt to directly estimate the label of each voxel given the local 

appearance of the image around it. To do so, a number of features are computed for each 

voxel and fed to a classifier that attempts to infer the corresponding label. Popular choices of 

features include image intensities, gradients, textures and other derived local measures (Tu et 

al. 2008). Choices of classifier range from simple rule-based classifiers (Li et al. 1993) to 

more complicated frameworks such as support vector machines (SVM Lee et al. 2005; Lao 

et al. 2006; Akselrod-Ballin et al. 2006; Zhang et al. 2009), AdaBoost (Quddus et al. 2005; 

Morra et al. 2010) and the increasingly popular random forests (Breiman 2001; Yi et al. 

2009; Geremia et al. 2010; Yaqub et al. 2011). These techniques show promising results 

when segmenting tissues, structures, and even tumors (Bauer et al. 2011; Li and Fan 2012) if 

the variations of the test data with respect to the training data are relatively small. 

Unfortunately, changes in MRI contrast due to differences in imaging hardware or 

acquisition protocol considerably reduce the performance of these methods, limiting their 

applicability to MRI scans that have not been acquired the same way as the training dataset.

Comparing generative and discriminative models, we observe that deformable templates 

(Felzenszwalb 2005; Pizer et al. 2003) guided by generative models can efficiently model 

anatomical structures, thanks to their flexibility and adaptability. However, their simplified 

assumptions on underlying image statistics (e.g., Gaussian distributions) limit their ability to 

deal with complex intensity patterns. On the other hand, such patterns can be efficiently 
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captured by discriminative models thanks to their capacity of fusing together a large number 

of features. However, as described above, they are sensitive to global intensity changes and 

have difficulties to include spatial information. In this paper, we propose combining the 

strengths of the two approaches by fusing deformable templates (generative) and informative 

features (discriminative). The presented approach is based on using the estimated 

segmentation and the parameters of the generative model to normalize the image intensities 

and extract robust, invariant local features. This creates an augmented feature space that can 

be used in a discriminative framework, effectively fusing the two types of model.

The rest of this paper is organized as follows. First, section “Further Related Work” surveys 

other attempts of combining generative and discriminative models in brain MRI 

segmentation. Section “Model Description” describes the proposed segmentation 

framework. Section “Learning and Using Fusion Models” describes how to train the model 

and use it to segment previously unseen test cases. A set of experiments and their 

corresponding results are described in section “Experiments”. Finally, section “Conclusion 

and Future Work” concludes the paper.

Further Related Work

Here we discuss other works in the literature that are similar to the proposed approach, 

highlighting the differences between them:

• Verma et al. (2008) use Bayesian and SVM models to classify the intra- and 

inter-patient tissue distributions. However, the two families of methods are 

separately used for the different sub-problems, rather than in an integrated 

fashion.

• In Tu et al. (2008), a discriminative classifier is used for appearance, and its 

classification results are regularized by generative models (PCA) capturing the 

shape prior. The two types of models are represented as separate modules and not 

jointly considered. In this paper, we utilize the same discriminative model, 

whereas the generative models are totally different. As shown in the experiments 

later on in this paper, the proposed method outperforms this algorithm, which is 

not robust across datasets due to the inability of the discriminative model to 

adapt to the new data.

• Wels et al. (2009) cast the subcortical segmentation as a posterior maximizing 

problem with shape parameters. The whole problem is decomposed into four 

sub-problems in sequence and each is solved by a discriminative model. Their 

segmentation then locates, rotates, scales, and refines the boundaries of structures 

in order, which performs a rough generative process. Nevertheless, the four 

underlying classifiers are purely discriminative so their weaknesses remain. If 

some stage fails, wrong information is propagated without any adaptation or 

correction. On the contrary, our discriminative model can benefit from the 

adaptation capability of generative models so the robustness is achieved.

• Wels et al. (2011) also propose a hybrid method for tissue segmentation. 

However, their approach is sequential: the discriminative model serves for 
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initializing and constraining the subsequent fitting of the generative model, 

which is carried out with an expectation maximization algorithm. The approach 

is validated on 38 scans from the same dataset (Internet Brain Segmentation 

Repository) using only three classes (WM/GM/CSF). It is unclear how this 

method would generalize to a higher number of brain structures, since the 

application of discriminative models at the structure level is more challenging 

than at tissue class level (i.e., just three classes).

• Fan et al. (2007) use a deformable template (generative) to estimate a rough 

region of each tissue, and a discriminative classifier (SVM) is trained on all 

tissue volumetric measures.

• Wang et al. (2011) propose a two-stage classifier wrapper for adapting different 

labeling protocols. They use the second stage classifier to learn the systematic 

errors from the first stage. As in Fan et al., the classifier independently refines an 

initial solution provided by the generative model.

Compared with these approaches, the key aspect that differentiates our algorithm is the use 

of an adaptive, augmented feature space that allows us to effectively fuse generative and 

discriminative models (as described in section “Model Fusion)”, rather than simply 

cascading them.

Model Description

In this section, a general formulation of the segmentation problem is provided. We first 

compare the generative and discriminative approach to the segmentation problem. The 

comparison reveals their complementary properties, and inspires our hybrid method. The 

idea is to first use a deformable template (the generative component, described in section 

“Deformable Templates Guided by Generative Models”) that produces a first estimate of the 

segmentation for an input volume. This rough estimate is then used (as described in in 

section “Model Fusion”) to: (1) calculate the regional statistics of the input volume for local 

(discriminative) feature normalization, and (2) derive local features such as region 

boundaries and label priors. These features, in combination with local appearance-based, 

discriminative features, give an augmented set that yields a rich description of the data by 

integrating information from the generative and discriminative sides. This augmented feature 

set will be used to train a classifier as described in section “Learning and Using Fusion 

Models”.

Problem Formulation

Our goal is to segment a given 3D volume/image V into K anatomical structures, where K is 

a fixed number. A training set of N volumes with their corresponding annotations (no less 

than K labels) is assumed to be available, and we denote this set as 

S = (V1
tr, A1

tr), ⋯(VN
tr, AN

tr) , where Vi
tr and Ai

tr are the i’th training volume and its 

corresponding annotation. We represent each structure by a region Ri. A segmentation is 

denoted as
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W = {(Ri, Θi), i = 0…K}, (1)

where R0 refers to the background region, and each Ri consists of all the voxels of the ith 

anatomical structure.

These regions are disjoint and they cover the entire volume: ∪i = 0
K Ri = Λ, where Λ defines 

the 3D lattice of the input V, and Ri ∩ Rj = Ø, ∀i ≠ j. Θi is a vector that includes the model 

parameters for the appearance and shape of region i.

If we define p(V(Ri)|Ri, Θi) as the likelihood of the volume confined in region Ri under 

model parameters Θi, the optimal solution in a Bayesian framework can be obtained as:

W∗ = argmax
W

p(W ∣ V) = argmax
W

p(V ∣ W)p(W)

= argmax
W

∏
i = 0

K
p(V(Ri) ∣ Ri, Θi)p(Ri)p(Θi),

(2)

where p(Ri) is the probability of the shape prior, whereas p(Θi) puts a prior on the 

parameters and is usually assumed to be flat i.e., p(Θi) ∝ 1. Moreover, we have assumed that 

the shapes of the different regions are independent, which allows us to write p(W) = Πp(Ri). 

Whereas a more faithful model would consider dependencies between the shapes of the 

structures, this common assumption greatly simplifies both the training of the model and the 

inference in the Bayesian framework. We further assume that the intensity inhomogeneity of 

a region is smooth and small enough (Leemput et al. 1999).

In general, independent identical distribution (i.i.d.) assumptions are made in the likelihood 

function, and the appearance of each structure is approximated by a Gaussian model (Fischi 

et al. 2004; Pohl et al. 2006). Let G(·;Θi) denote a Gaussian distribution parameterized by Θi 

and let vj be the intensity value of voxel j. The likelihood then can be represented as:

p(V(Ri) ∣ Ri, Θi) = ∏
∀ j ∈ Ri

G(v j; Θi),

where Θi contains the mean and standard deviation of region i: Θi = {v̄i, σi}. As argued in Tu 

et al. (2008), using only generative models with i.i.d. assumptions is often too simplistic to 

fully account for the realistic textures of MRI data. This insufficiency, especially between 

structural boundaries, will be addressed by the discriminative models in our method.

For a discriminative approach, there is no explicit data parameter estimated for each input 

volume V; the model is instead learned in the form of a classifier derived from a training 

dataset. Thus, the solution vector by a discriminative model becomes
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WR = Ri, i = 0…K . (3)

We use |V| to represent the total number of voxels in V and lj to denote the label assigned to 

voxel j. Ri is therefore the set of all lj = i. A discriminative classifier directly computes the 

class label at a voxel j which has the maximum class posterior, which is based on the local 

features computed on the sub-volume V(Nj) centered at j:

WR
∗ ≡ (l j

∗, j = 1.. ∣ V ∣ ) = arg max
WR

∏
j = 1

∣ V ∣
p(l j ∣ V(N j)), (4)

where the label of voxel j maximizing the equation is denoted as l j
∗.

If we compare the solution vectors W and WR in Eqs. 2 (generative) and 4 (discriminative), 

we make two observations. First, generative models explicitly estimate the data parameters 

and thus are adaptive to the input. Second, discriminative models can efficiently capture 

complex local image statistics by combining many low- and mid-level features. As discussed 

above, generative models make simplistic assumptions for the likelihood term modeling the 

local appearance, whereas discriminative models struggle capturing the information from 

larger regions. Therefore, in this study we will use deformable templates guided by 

generative models (as described in section “Deformable Templates Guided by Generative 

Models”) and seek to fuse them with the discriminative model in Eq. 4 (as described in 

section “Model Fusion”).

Deformable Templates Guided by Generative Models

For the generative model of image intensities we adopt a Gaussian mixture model due to its 

modeling capability (Fischl et al. 2002; Yang et al. 2004; Pizer et al. 2003) and relatively 

low computational complexity. Let Θ= {Θi, i = 0,…, K}, we introduce the weights of 

Gaussian components so the parameters for each region are given by:

Θi = vi
(m), σi

(m), βi
(m) , m = 1, 2 ,

where vi
(m), σi

(m), and βi
(m) are respectively the mean, standard deviation and weight of 

Gaussian component m of region Ri. In this paper, we assume two components m = 1, 2 for 

each model, which is empirically sufficient to describe the appearance of the anatomical 

regions. The parameters of these Gaussian components are obtained with a expectation 

maximization (EM) algorithm (Calinon et al. 2007). According to this model, we have the 

following likelihood function of voxel j in region Ri :
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p(v j; Θi) = ∑
m = 1

2
βi

(m)G v j; vi
(m), σi

(m) , (5)

Given a volume V, we seek to minimize an energy function under the Bayesian formulation 

of Eq. 2 with flat p(Θi):

E(WR, Θ, V) = ∑
i = 0

K
− log p(V(Ri) ∣ Ri, Θi) − log p(Ri) − log p(Θi)

≈ ∑
i = 0

K
∑

j ∈ Ri

− log p(v j; Θi) + κ ∑
j′ ∈ N j

δ l j′ ≠ l( j) ,

(6)

where the first term assumes the mixture model in Eq. 5 and the second term is a Markov 

Random Field prior for p(Ri) that encourages smooth region boundaries/surfaces; using 

other priors is also possible. Nj is the set of neighboring voxels of j and l(j′) and l(j) are 

respectively the region labels of j′ and j; δ(·) is Kronecker’s delta and κ is a constant that 

balances the weight of the smoothness prior versus the likelihood of the intensities. We 

assume p(Θi) ∝ 1 so this term can be omitted. Such a flat prior implies that, a priori, we do 

not prefer any values of the Gaussian parameters over others. In other words, we assume no 

prior knowledge on the intensities of the image.

An estimate of WR and Θ can be obtained by minimizing E(WR, Θ, V):

W = WR, Θ = argmin
WR

E(WR, Θ, V) . (7)

Starting from an initial solution (a deformed template containing a volume Va and its label 

annotation Aa), we minimize the energy E(WR, Θ, V) in Eq. 6 using a region competition 

algorithm (Tu et al. 2008; Zhu and Yuille 1996). Henceforth, we denote this algorithm as 

gmDT (generative model based on a deformable template).

To avoid the initial solution is biased, we use the set of training volumes with their 

corresponding labels, S = V1
tr, A1

tr , ⋯ VN
tr, AN

tr , to generate the template denoted as (Va, 

Aa). We use D(V, Vn) to denote the dissimilarity between V and Vn
tr after applying a linear 

transformation (in our case, computed with AIR (Woods et al. 1993)). The learned template 

volume Va minimizes the total dissimilarity with all other volumes in the training set:

Va = arg minV ∈ S ∑
n = 1

N
D V, Vn

tr , (8)
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The corresponding manual annotation of Va, Aa, is used as the initial WR in Eq. 7. Then, the 

obtained segmentation estimated by gmDT, ŴR, is an approximation to the optimal 

solution. A byproduct of gmDT is Θ̂, the parameter estimates.

Model Fusion

Next, we discuss the discriminative model in our method, which is used to incorporate the 

adapted information from gmDT. For a purely discriminative model, we denote the total 

number of candidate features by B and the kth feature for voxel j computed on volume V(Nj) 

by fd,k(j). The discriminative feature vector Fd(j) of each voxel j can be written as:

Fd( j) ≡ f d, 1(V(N j)), ⋯, f d, B(V(N j)) (9)

A discriminative classifier, e.g., boosting (Freund and Schapire 1997), selects a number of 

informative features (typically a couple of hundred) from Fd(·) and fuses them with 

appropriate weights. The training process is driven by the minimization of the classification 

error in the labeled training data and the generalization power of the classifier (VC 

dimension, Vapnik 1982). Hence, the quality of a trained discriminative classifier is greatly 

determined by the effectiveness of its feature set.

To achieve enhanced robustness, the basic idea here is to integrate the adaptiveness and the 

fusion capability respectively from generative and discriminative models. This is done by 

augmenting the feature vector Fd with (ŴR, Θ̂) from the deformable template. This way, we 

achieve robustness against intensity variations while we equip Fd with structure-adapted 

features.

Using ŴR for Intensity Normalization—Features computed directly from V(Nj) are 

often sensitive to geometrical and intensity variations, but Θ̂ from Eq. 7 can then be used to 

normalize V. We denote the normalized volume as VΘ̂. The new, augmented feature vector 

F(j) is:

F( j) ≡ F
WR

( j), f d, 1(VΘ(N j)), ⋯, f d, B(VΘ(N j)) , (10)

Comparing Eq. 10 with Eq. 9, fd,k(VΘ̂(Nj))is computed on the normalized volume VΘ̂, 

instead of fd,k(V(Nj)), for a voxel j. FŴR(j) represents the augmented features based on ŴR 

that will be discussed below.

Normalization is achieved by intensity correction based on matching the intensity of the 

regions to those from the template volume (Hou 2006). Specifically, we search for the linear 

transform that best matches the intensities in a least squares sense, a problem that can be 

solved with standard techniques (Tibshirani 1996).

Augmenting Atlas Features from ŴR—From ŴR (given by gmDT), we have an 

estimated region label for each voxel j. To differentiate this estimated label from lj in Eq. 4, 
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we use l̂j to denote it. From ŴR, the displacement vector of a voxel j to the centroid of 

structure k, dR̂k (j), can be calculated. This displacement vector is a spatial feature which is 

more adaptive than the absolute coordinates. Similarly, we can compute the signed distance 

function of each voxel j with respect to the estimated region boundary of each anatomical 

structure. The signed distance sR̂i(j) of voxel j to the boundary of region R̂
i is:

s
Ri

( j) =
+ min

j′ ∈ Ci
d j, j′ i f l ( j) = i

− min
j′ ∈ Ci

d j, j′ otherwise
, (11)

where d(j, j′) is the distance between j to any point j′ on the region boundary Ĉi. The 

positive/negative sign indicates that j is inside/outside Rî. Now our augmented feature vector 

becomes:

F
WR

( j) = d
R0

( j), ⋯, d
RK

( j), s
R0

( j), ⋯, s
RK

( j) , (12)

Henceforth, we denote these features derived from ŴR as “atlas features”. They correspond 

to FŴR(j) in Eq. 10.

Learning and Using Fusion Models

Here we aggregate all the components in section “Model Description” to define the training 

and classification (testing) stages of our method. An atlas (template) will first be selected 

among the training data as the template. As described in section “Deformable Templates 

Guided by Generative Models”), the template will be guided by gmDT to adapt to the input 

volumes. Though we know the true labels of the training data, gmDT is applied 

(normalization and atlas features) in training the discriminative models so the resultant 

classifiers can model the estimates from gmDT in the test stage.

Atlas Selection and Feature onstitution

In the training stage, we have the set of training volumes with their corresponding labels 

S = Vn
tr, An

tr , n = 1..N , which have been normalized to the same scale and properly 

preprocessed. A template, (Va, Aa), can be learned based on Eq. 8.

For our model, we will need to learn the uncertainty from gmDT before training the 

discriminative models. Using Aa as the initial labeling, we perform gmDT on the rest of 

training volumes in S. For each training volume Vn
tr, an estimated segmentation Ŵn

tr is 

obtained from gmDT. On the other hand, we define the feature set for the discriminative 

classifiers, Fd(·), as local features such as gradients, curvatures, and Haar-like responses at 

various spatial scales (approximately 5,000 in total in this paper, but our method is not 

restricted to the specific Fd(·)). Since the training volumes are in the same size, these 

features can be computed directly on a pre-defined sub-window (of size 11 × 11 × 11) 
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centered at the target voxel. A detailed discussion of how these features are computed can be 

found in Tu et al. (2008).

We use the estimated Ŵn
tr to: (1) normalize the intensity of Vn

tr to Va as in section “Model 

Fusion” and then compute [fd,1(VΘ̂(Nj)), ···, fd,B≈5000(VΘ̂(Nj))] on the normalized intensity 

volume; and (2) compute the atlas features FŴR(j) as in Eq. 12. Combining the two sets 

yields the augmented feature set (about 6,000 features), F(j), for each voxel j in the training 

volume Vn
tr.

In short, gmDT is also applied to the training volumes. The role of the ground truth labels in 

the training stage is to train the discriminative, supervised classifiers; they do not participate 

before computing the augmented features.

Integration within a Discriminative Framework

Once all the features F(j) are computed, we train a classifier upon the training set

ℵ = {(l( j), F( j)), j = 1..T},

where l(j) is the true label for voxel j, and T is the total number of voxels in all the training 

volumes.

A learning algorithm either directly combines all the features in F(j) like SVM (Vapnik 

1998), or selects a set of features out of F(j) such as boosting (Freund and Schapire 1997) 

and random forests (Breiman 2001). Either way, features are combined into the classifier in 

order to minimize the training error. When training our model, no preference was given to 

features derived from the atlas over those computed from image intensities (e.g., Haar-like), 

and vice versa. Here we adopt the auto-context algorithm using a cascade of PBT 

(Probabilistic Boosting Tree) classifiers (Tu and Bai 2010) as the discriminative model, 

which performs feature selection and fusion by exploring a high-dimensional feature space. 

Note that, in addition to the features in F(j), auto-context (Tu and Bai 2010) itself is an 

iterative method that incorporates contextual information into the classification by 

augmenting the feature space as follows. In a first iteration, the classifier is trained on the 

available set of features. In subsequent iterations, the label posteriors (as estimated by the 

current classifier) at a fixed set of shifted locations are added to the feature space, implicitly 

capturing the shape of the structures to segment. A summary of the algorithm is described in 

Fig. 1; the reader is referred to the original paper (Tu and Bai 2010) for further details.

Nevertheless, the key of our proposed method is the augmentation/normalization of features, 

which implicitly fuses the generative and discriminate aspects of the model. It is not tied to 

any specific choice of classifier so one could also use boosting, random forests, or any 

probabilistic classifiers as the discriminative classifier.

Once a classifier has been trained on the training set ℵ = {(l(j), F(j)), j = 1..T }, we can use 

it to estimate p(l|F(i)) for a given test voxel i. A test volume is required to have the same 
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preprocessing steps and resized such that all features can be correctly computed. Each test 

voxel will be assigned to the label that maximizes the probability: li
∗ = arg maxl p(l ∣ F(i)).

We summarize the training algorithm in Fig. 2 and illustrate it in Fig. 3. In Fig. 3, the 

identical template, (Va, Aa), will be used in both training and testing. The testing procedure 

consists of three stages analogous to those in the training procedure, except the last stage: 

performing classification using the trained classifier.

Experiments

To examine the effectiveness of the proposed algorithm, we perform a thorough empirical 

study using four MRI T1-weighted brain datasets and compare our method against the state-

of-the-art systems. We focus on sub-cortical structures due to their popularity in the 

literature. Besides comparing our method with the two components in our method, gmDT 
and DM, we also include the methods developed by other researchers to show the integration 

can achieve better performance in most scenarios.

We will demonstrate the performance of the integrated method by four parts: (1) Increased 

importance of the adapted atlas features using the fusion mechanism; (2) Comparison using 

the same dataset for training and testing (intra-dataset). This scenario is very suit for DM 
and the proposed method is comparable to it; (3) Comparison using different datasets for 

training and testing (inter-dataset). This scenario is favored by gmDT and our method 

achieved better results; (4) Performance on longitudinal data, which shows the potential of 

our method to capture the morphological changes by the same subject. Though the fact that 

DM tends to fail in the last two parts is known, we still show its quantitative results for 

completeness.

Experimental Setup

In this section, we elaborate the datasets used in our four parts of experiments, the three 

main algorithms to compare, the pre-processing steps we applied to the heterogeneous 

datasets, and the measures we used for our comparisons.

T1 MRI Datasets—All the datasets used in our experiments are the following (the suffix 

indicates the number of volumes in the dataset):

(1) IBSR18: We use the 18 scans with 84 manually annotated structures from the Internet Brain Segmentation Repository (IBSR)1 (we do not 
include the 120 cortical/subcortical parcellations as 84 structures are sufficient in our experiment). All volumes were scanned at 1.5T. 
This dataset has been extensively utilized as a benchmark for evaluation in various papers.2

(2) LPBA40: The LONI Probabilistic Brain Atlas dataset (LPBA) (Shattuck et al. 2008) contains volumes from 40 healthy subjects with 56 
anatomical structures manually annotated. These structures include both cortical and subcortical regions. All subjects were scanned 
with a GE Signa 1.5T systems with a SPGR sequence.

(3) LONI28: 28 scans from normal subjects were acquired on a GE Sigma 1.5T scanner with a SPGR sequence. Eight subcortical structures (left 
and right hippocampus, putamen, caudate nucleus, and lateral ventricle) were manually delineated by neuroanatomists.

(4) ADNI980: The Alzheimer’s Disease Neuroimaging Initiative (ADNI) (Jack et al. 2008) was launched in 2003 by government, private 
pharmaceutical companies and non-profit organizations. The goal of ADNI has been to develop measures for the progression of mild 
cognitive impairment (MCI) and early Alzheimer’s disease (AD). ADNI is the result of efforts of many co-investigators from a broad 

1http://www.cma.mgh.harvard.edu/ibsr
2http://www.cma.mgh.harvard.edu/ibsr/PubsUsingIBSR.html
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range of academic institutions and private corporations, and the data keeps growing by its follow-up projects. Readers may see 
www.adni-info.org for more information. In this study, 490 pairs of brain scans (980 volumes in total) were selected from ADNI. They 
correspond to 490 subjects who are known to be one of the three groups: elderly controls, mild cognitive impairment (MCI), or 
Alzheimer’s Disease (AD). For each subject, two volumes were acquired 12 months apart for longitudinal analysis. This dataset is 
particularly challenging because the subjects were scanned at different sites with different scanners. Therefore, these volumes display 
high variability stemming from intrinsic longitudinal changes of subjects and scanning configurations. More details of the various 
scanning protocols can be found in http://adni.loni.ucla.edu/research/protocols/mri-protocols/.

Note that not all the datasets have manual delineations of all subcortical structures. We 

summarize the main characteristics of these four datasets, as well as the role they play in our 

experiments, in Table 1.

Algorithms to Compare—We adopt region competition (Tu et al. 2008; Zhu and Yuille 

1996) as the gmDT process which iteratively minimizes the energy E(WR, Θ, V) in Eq. 6. 

We choose region competition due to its simplicity and effectiveness. The template (Va, Aa) 

is learned according to Eq. 8, using Mattes mutual information as the dissimilarity function. 

The region competition process takes about 5 ~ 15 minutes to reach a steady state (no more 

change of labels, or fluctuation of labels) of surface evolution. It runs typically for less than 

15 iterations. Other approaches such as the level set methods (Chan and Vese 2001; Yang et 

al. 2004) could also have been used to perform energy minimization in a similar manner.

On the other hand, we use the auto-context algorithm (Tu and Bai 2010) with PBT as the 

baseline discriminative classifier. Henceforth, this discriminative model is denoted as DM. 

Its running time is 10 ~ 20 minutes, depending on the number of structures for segmentation.

Comparisons between our method, gmDT and DM demonstrates the advantages due to the 

integration. We also list the measures from literatures for the same T1 MRI dataset and 

structures if available.

Pre-Processing—Before applying the three algorithms for comparison, these 

heterogeneous datasets several preprocessing steps. We eliminate the dominant spatial 

disparity between an input volume and an atlas by the following sequence of preprocessing 

steps: (1) re-orientation using AIR 2.5 (Woods et al. 1993) (if the two volumes were at 

different orientations); (2) skull stripping using BET in FSL 4.0.3 (Smith 2002); (3) a 12-

parameter global affine registration using AIR 2.5; and (4) a diffeomorphic registration, 

SyN, from ANTS 1.9 (Avants et al. 2008).

We chose SyN as our non-linear method stage due to its speed and high accuracy (Klein and 

et al. 2009). We use the following settings: three resolution levels (30x50x5 iterations), step-

length 0.15, probability mapping (PR) with 4 mm radius as cost function, and regularization 

with a Gaussian filter with standard deviation 3 mm. These parameters are obtained 

empirically and they provide sufficient spatial alignments for gmDT across the four test 

datasets. Under these settings, the SyN registration between an atlas and an image can be 

done under 30 minutes. Steps prior to SyN can be done in 5 minutes. Once the segmentation 

result is obtained, each preprocessing step is reverted to map the result back to the original 

space.

Measures for Comparison—The main evaluation measure used here is the Dice overlap, 

Dice = 2 ∗ ∣ L ∩ S ∣
( ∣ L ∣ + ∣ S ∣ ) , where L and S are the sets of voxels manually annotated and those 
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automatically segmented. Precision and recall rates are also used in Table 6, where Precision 
= |L ∩ S|/|S| and Recall = |L ∩ S|/|L|. Another popular measure in literature, Jaccard 

coefficient, can be directly calculated from Dice: Jaccard−1 = 2Dice−1 − 1. In the inter-

dataset tests, as our method and gmDT are adaptive, we further compare them in surface 

consistency. Hausdorff distances (Loncaric 1998) and the Mean distances (Yang et al. 2004) 

between two sets of surface voxels are measured:

H(A, B) = max
a ∈ A

min
b ∈ B

D(a, b), M(A, B)

= ∑
a ∈ CA

min
b ∈ CB

D(a, b)
∣ CA ∣ ,

(13)

where A and B are sets of voxels. H (·) and M(·) are respectively the Hausdorff distance and 

the Mean distance. D is the underlying distance metric, which is usually the Euclidean 

distance or the Manhattan distance. CA is the surface of segment A. Note that both the 

directed Hausdorff distance and the Mean distances are not symmetric. We will use H(A,B), 

H(B,A), and one direction (segmented to ground truth) of the Mean distances in our 

evaluation.

Importance of Atlas Features

To demonstrate the importance of using atlas features based on deformable templates, we 

compare the features used in two models trained to segment the 56 brain structures of 

LPBA, one with a fixed annotation Aa (no adaptation to the input volume) and another with 

an adapted atlas based on gmDT. The feature pool is dominated by Haar-like responses due 

to their effectiveness to describe the appearance at different spatial scales. Derivative 

features perform similarly to Haar, but are limited to eighteen local derivatives in the x, y, 

and z directions. Features in the column “Others” include intensities, gradients, and 

curvatures. As mentioned in section “Integration within a Discriminative Framework”, we 

perform feature selection when training the Probability Boosting Tree (PBT). For each node 

in PBT, a limited number of features are chosen to form a decision criterion (a boosting 

classifier) such that the classification error is minimized for the training data arriving at this 

node. Giving the same complexity of the trained classifiers (the same tree depth and the 

same number of features used at each tree node), we observe in the table that more atlas 

features are selected when using an adapted atlas rather than a fixed one; the percentage of 

the selected atlas features increases from <3 % to 6 % (Table 2).

Intra-Dataset Evaluation

In this section, we evaluate our algorithm using training and test data from the same dataset, 

which is common in brain image segmentation. IBSR18 and LPBA40 are included in this 

experiment.

(1) IBSR18: A total of 14 subcortical structures including the left and right lateral-ventricles are evaluated. Due to the relatively few number of 
volumes in IBSR18, we perform a threefold cross-validation, i.e., six volumes in each fold are used as the test set, and the other twelve 
volumes are used to train our model.
We use the box plots in Fig. 4 to compare the three methods and Table 3a to lists the Dice overlaps produced by DM, pure SyN, gmDT, 
and our method. The measures of SyN were included to clarify the improvements between it and our generative process.
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In Table 3a, the row SyN lists six of the intermediate DICE overlaps before using gmDT. SyN performs a diffeomorphic transform 
mainly adapted to larger spatial variations of the whole brain so it can reduce location errors. Based on its rough results, gmDT utilized 
the relatively reliable statistics of each structure so the DICE values can be boosted at least 0.039(Thalami). Therefore, the use of SyN 
in our system is to reduce the risk of failure in gmDT; it is still a preprocessing step instead of a main factor in the whole our method.
The data in IBSR18 display larger variations in appearance and shape, and therefore, DM trained upon just 12 images in each fold could 
not generate satisfactory results. In this scenario, gmDT showcases its superior adaptiveness. From Fig. 4, we observe that the 
advantage of gmDT is inherited by our fusion method but the similar and better measures.
A visual example of the extracted structures by DM, gmDT and our method is shown in Fig. 5. Although not all of the 18 structures can 
be shown in a single 2D slice, better matched caudate nuclei, thalami, and putamens by our algorithm due to the fused information can 
still be observed. Table 3b lists several published reports on IBSR18, and our measures are at the top on the seven types of gray matter 
structures, with particularly significant improvements for the pallidum and amygdala. The results are close to Khan et al. (2009) which 
is based on a computationally expensive multi-atlas approach. Their method outperforms ours for the ventricles (0.85 versus 0.80), but 
is inferior for the pallidum (0.72 versus 0.81) and amygdala (0.66 versus 0.73).

(2) LPBA40: In the LPBA40 dataset Shattuck et al. 2008, 40 subjects with fifty-six anatomical structures, both cortical and sub-cortical, were 
manually delineated for each T1-weighted MRI volumes. We randomly choose 25 volumes for training and use the remaining 15 for 
testing.

To compare our algorithm against gmDT and DM, we use Fig. 6 and the detailed measures 

in Table 4 for a comprehensive comparison. From Fig. 6, we observe that fusing the two 

models in our method achieves higher average Dice coefficients than the two baseline 

methods. Our method gives better measures on L/R hippocampus (p-value=0.017/0.003) 

than both the discriminative and the generative models, but the measures of caudate nuclei 

are worse than DM due to the considerably degraded performance of the generative model. 

Reasons for this could be (1) the intra-dataset test of LPBA40 containing smaller data 

variance is favored by DM, and (2) the boundaries between the caudate nuclei and the 

ventricles in LPBA40 are obscured so gmDT could be misled. The weaknesses of gmDT in 

this scenario are the inferior DICE scores and quartile positions. These are all improved by 

our fusion method due to the corrections in the discriminative framework, especially in the 

left/right caudates and the left putamen. The difference in the average Dice overlap between 

our method and gmDT is relatively small (~ 1 %), but still very statistically significant by 

the p-values shown in Table 4.

In summary, the two intra-dataset tests show the proposed fusion method successfully 

combine the advantages of DM and gmDT, and its performance is at least comparable to 

DM.

Robustness Across Different Datasets (Inter-Dataset)

In the previous experiments, we trained and tested our method on volumes from the same 

dataset. To build a practical system dealing with clinical data, it is important to test its 

robustness on a large number of volumes from various sources.

We use the same model trained from IBSR18 as in section “Intra-Dataset Evaluation”(1). 

The test datasets include LPBA40 and LONI28. Both of them have manual annotations of 

subcortical structures (caudate nuclei, putamens, and hippocampi for both sets, lateral 

ventricles only for LONI28). These structures are all covered by the annotations of IBSR 

(see section “Intra-Dataset Evaluation”(1). We choose these subcortical structures because: 

(1) they are frequently used to evaluate automatic segmentation methods; and (2) they are 

very relevant in neuro-image studies of diseases such as Alzheimer’s and Parkinson’s. To 

keep the results comparable with other literatures on the same test datasets, we chose not to 

re-annotate the structures but keep the annotations as they were. In the following 

experiments, DM, gmDT, and our algorithm are trained from the same training data. The 

other methods (FreeSurfer and FSL) are off-the-shelf systems without any parameter 
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adjustments. Although the difference among the three protocols introduce intrinsic Dice 

errors, they still share a high proportion of common structure regions and the relative 

performance between the three models trained by the same data can be observed.

In addition to the quantitative analyses on the two test datasets, we also test the model 

trained on LPBA40 - section “Intra-Dataset Evaluation”(2) - and show visual examples on 

ADNI980, LPBA40 and LONI28 at the end of this section.

(1) LPBA40: Table 5 gives the Dice measures of three types of subcortical structures in LPBA40. All values are the averages of the corresponding 
measures of the left and right structures. Our method demonstrates the best performance among all five competing algorithms. 
Compared with the intra-dataset results in Table 4, noticeable degradation of the Dice overlaps is found in hippocampus among all 
methods in Table 5. This is because the subiculum region of hippocampus in LPBA40 was annotated differently from IBSR and 
many other datasets.
The improvement in surface distance measures given by our method is shown in Figs. 7 and 8. We denote the automated segmented 
result as W* and the ground truth as W. Our method achieves consistent improvement over gmDT. According to the p-values, the 
mean distance measures show especially significant improvement on the left caudate (p-value=0.0010), left putamen (p-
value=0.0041), left hippocampus (p-value=0.0003), and right putamen (p-value=0.0326). The box plots in Fig. 9 confirm the overall 
better performance of our method in terms of Dice overlap.

(2) LONI28: The segmentation accuracy in eight subcortical structures on LONI28 (Left/Right Hippocampi, Left/Right Caudate Nuclei, Left/
Right Putamens, and Left/Right lateral ventricles) by the model trained from IBSR18 is shown in Table 6. The results from 
Freesurfer and Hybrid are from Tu et al. (2008). The Hybrid model is trained by 14 LONI28 volumes and the measures are 
calculated from the other 14 test volumes. Although our model is trained by IBSR18, our method provides the best F-values in five 
structures as well as the averages in the last column. This shows the robustness of our method when segmenting the subcortical, gray 
matter structures in a different dataset.
The Dice overlaps in Table 6 show similar performances by gmDT and our method. Surface distance measures are showed in Figs. 
10 and 11. Our method gives smaller Mean and Hausdorff distances, while gmDT provides smaller H (W, W*). We notice that H 
(W*, W) yields a significant improvement on most structures (LH, RH, LC, RC, LP, RP). From the four tables, we observe that W* 

produced by our method has more consistent surface with W than gmDT (better H (W*, W) and smaller Mean distance).
The improvement produced by our method can also be observed in the box plots in Fig. 12. Our method not only increases the 
average Dice coefficient in all the tested structures (higher average values), but the worst cases have all improved.

(3) 56 
structures on 
ADNI980, 
LONI28, and 
IBSR18:

In addition to the two subcortical tests on our IBSR18 subcortical model, we used the fifty-six structure model trained upon LPBA40 
in section “Intra-Dataset Evaluation”(2) to perform cortical and subcortical segmentation on three datasets: ADNI980, LONI28, and 
IBSR18. Figure 13 shows a number of 2D MRI slices together with their segmentation results. We see from the figure that the 
intensity patterns and textures are quite different for these datasets. Even within the same dataset, ADNI980, the MRI slices show 
large variation since not all of them were acquired with the same scanner. However, despite such a high degree of variability in the 
data, the segmentation results are mostly satisfactory.

By the first two parts of tests containing disparate training and test datasets, we see the 

proposed fusion method can achieve the highest compatibility between different protocols, 

all by experts, than DM and gmDT given the same training set. The third test further shows 

its robustness to large data variation. Both properties are important when applying the 

proposed method as a common brain segmentation tool.

Performance in Longitudinal Studies

Section “Robustness Across Different Datasets (Inter-Dataset)” demonstrated the 

effectiveness of the proposed algorithm for segmenting structures from several datasets with 

high variability in anatomy and image intensities. In this section, we show the results of our 

algorithm on data in a longitudinal study where the main source of variation is the temporal 

changes within the same subject. Since the results from Hua et al. 2009 indicate the 

significant atrophy of hippocampi in both MCI and AD cases, and the scans from ADNI980 

provide the longitudinal (12 months) data of 490 subjects from AD, MCI, and normal 

control groups, we use this dataset as our testbed. ADNI980 volumes also display large 

variations between subjects due to different scanning settings; nevertheless, volumes from 

the same subject still share the same acquisition configurations. Although our method may 

need more specific design for high precision hippocampus segmentation, this experiment 

still shows our advantage with respect to the baseline methods in the longitudinal study.
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The tested segmentation methods include DT, gmDT, and our algorithm. The training data 

contains volumes from 7 AD, 7 MCI, and 7 control subjects in ADNI with manual 

annotations of hippocampi by an expert (these subjects are not part of the 490). The 

measures listed in Table 7 include the average volume of baseline, the average volume after 

12 months, the volume difference between the two times, and the percentage of volume loss.

All the measures obtained by a discriminative approach (Tu and Bai 2010) are listed in Table 

7a and those by gmDT are listed in Table 7b. As DM is not adaptive, the coverage of the 

segmented region by DM is conservative if the test hippocampus has a drifted position, a 

shape distortion like that typically produced by AD, or a different statistical distribution of 

appearance. DM also fails to identify the hippocampal regions of 13 subjects, so we needed 

exclude their volumes from Table 7a. For the rest of the scans, the averages of volume 

change and percentage of loss show noticeable differences between groups. However, their 

standard deviations are relatively large, indicating that the measures from the direct 

discriminative model are not stable for the three groups. In Table 7b, the longitudinal 

differences between AD and normal are not fully demonstrated because gmDT (with a 

simple appearance model) could include more non-hippocampal regions than DM and our 

method. Instead, our approach gives apparent differences in all columns among the three 

groups; see Table 7c. The smaller standard deviations provide a better separation of the three 

groups compared to DM. In addition, the balanced performance among the left 

hippocampus, the right hippocampus and the average is evident.

We further compare the results by our method with the estimated hippocampal volume 

changing rates reported by Schuff et al. (2012). Their estimated rates are modeled as 

nonlinear curves based on manual segmentations of ADNI data. As the average ages of our 

three groups are 76.82(standard deviation(SD) = 6.63) for Normal, 76.05(SD = 6.67) for 

MCI, and 76.82(SD = 6.44) for AD, our data are mostly located in the range [70–80], where 

their estimated curves are still close to linear. Using the average hippocampal volume of 75 

years old normal subjects as the standard level, their chart shows the estimated average 

volume losses as 400 mm3 (sMCI, the subjects do not convert to AD), 650 (cMCI, the 

subjects would progress to AD), and 750 (AD). Our average volume of the whole MCI 

group is 573.40 mm3 less than the Normal group and consistent with this estimation. 

However, the number of our AD group is 920.34 mm3 which is 170 mm3 larger than their 

estimation. This is a hint of what direction to work in if we want to specifically adjust our 

work in order to obtain precise hippocampal segmentations. Table 7 shows that our method 

achieves higher robustness when identifying inter- and intra- individual differences, and its 

potential to help indicate different pathological stages.

Conclusion and Future Work

In this paper, we have proposed a system for brain MRI image segmentation by fusing 

together deformable templates (generative) and informative features (discriminative). It takes 

the advantages of the generative model for being adaptive and the discriminative classifier 

for achieving classification power on high dimensional data. This approach uses a new way 

3http://www.loni.ucla.edu
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of combining generative and discriminative models and the complementary properties 

between them can be efficiently exerted; the information extracted from generative models is 

considered as an additional channel of features for training the discriminative models. The 

trained models are improved in two ways: (1) The original features can be normalized 

according to intrinsic structural statistics. Typical methods to accommodate large variation, 

such as performing histogram matching (Sled et al. 1998) or extracting features invariant to 

intensity change (Unay et al. 2008), are only based on the statistics of whole volume data. 

(2) The feature set is augmented with features derived from the estimation by gmDT.

A thorough experimental study on T1-weighted datasets demonstrates the robustness of our 

algorithm. Although discriminative models can perform well if the training and the test data 

share the same condition of variances, better performance can still be observed by our 

method as our discriminative models augment the informative feature set with generative 

features. This advantage leads to improvement over several state-of-the-art algorithms. The 

inter-dataset and the longitudinal tests show the deficiency of discriminative models in 

practice and the necessity of introducing the generative information. Our method 

demonstrates both adaptiveness and precision in these challenging tests and outperforms the 

two direct models in region overlaps (Dice) and surface fitness. This is different from Wang 

et al. (2011) that the first stage classifier is considered as a black box approach. These 

advantages also lead to the improvement over several state-of-the-art algorithms on standard 

datasets such as IBSR18, LPBA40, and ADNI.

An important aspect of the proposed method is its running time, which is approximately one 

hour. Whether the system is practical depends on the application. In neuroimaging studies, 

in which research labs often spend months collecting the data, slow running times are not a 

problem. For instance, our method is much faster than the widely used FreeSurfer, which 

requires on average 12 hours to segment a single brain scan. In clinical practice, one hour 

might no be sufficiently fast. The bottleneck of the algorithm is, as for many other brain 

MRI segmentation methods, the nonlinear registration. However, the registration can be 

dramatically sped-up through parallelization.

An aspect of the framework that was not evaluated was its performance on multispectral 

data. In this scenario, the different data channels represent images acquired with different 

MRI contrast (Prastawa et al. 2003; Menze et al. 2010; Yang et al. 2010; Geremia et al. 

2011) or even different modalities (Fitzpatrick et al. 1999; Chen and Varshney 2003). 

Segmentations on multispectral data have the potential to be more accurate thanks to the 

larger amount of information present in the different channels. In our framework, 

generalization to multispectral scenarios is immediate: the intensities of the additional 

channels are just extra dimensions of the feature vectors. Another possible line of research 

would be to analyze the performance of the framework using other generative or 

discriminative models. For instance, it would be interesting to assess whether introducing 

explicit shape, regional, or context information in the generative prior has a positive impact 

of the segmentation. Exploring all these directions remains as future work.
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Information Sharing Statement

An implementation of the method is publicly available for download at the LONI3 and 

NITRC 4 websites. We provide a Windows®, a Linux®, and a LONI pipeline version. The 

software can be used freely in research provided this paper is cited in any material using the 

results of their application. For other usage, contact the authors.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Training process of auto-context algorithm for our brain segmentation method
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Fig. 2. 
Training process. All the training volumes are assumed to be skull-stripped and aligned
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Fig. 3. 
Training procedures of the proposed fusion method. A template of the volume/label pair is 

selected and guided by gmDT using other training volumes as the input. The augmented 

feature set F is then extracted to train the discriminative model giving the manual labels of 

the training volumes
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Fig. 4. 
Box plots of the Dice coefficients of the discriminative model, the generative model based 

deformable template approach (gmDT), and our method on IBSR18. The top and bottom 

ends of a vertical line are the maximum and minimum values; The upper and lower edges of 

a box are the quartiles (25 % and 75 % data). The line inside a box indicates the average 

value, which is the same as Table 4
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Fig. 5. 
Segmentation results on a typical slice view by (a) discriminative method (DM), (b) the 

generative model based deformable template (gmDT), and (c) our algorithm. The leftmost 

picture shows the ground truth labeling for comparison. Only partial of the extracted 

structures are shown in this 2D view. The example image is IBSR_09 from the IBSR18 

dataset
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Fig. 6. 
Box plots of the Dice coefficients of the discriminative model, the generative model based 

deformable template approach (gmDT), and our method on LPBA40. The top and bottom 

ends of a vertical line are the maximum and minimum values; The upper and lower edges of 

a box are the quartiles (25 % and 75 % data). The line inside a box indicates the average 

value, which is the same as Table 4. All models were trained by the 25 images from 

LPBA40
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Fig. 7. 
Inter-dataset Hausdorff distance measures in mm, on 40 LPBA40 volumes for extracting the 

three types of subcortical structures (smaller is better). We denote the automated segmented 

result as W* and the ground truth as W.
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Fig. 8. 
Inter-dataset Mean distance measures in mm, on 40 LPBA40 volumes for extracting the 

three types of subcortical structures (smaller is better). The standard deviations are shown in 

parentheses.
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Fig. 9. 
Box plots of the Dice coefficients of the generative model based deformable template 

approach (gmDT) and our method on LPBA40. The top and bottom ends of a vertical line 

are the maximum and minimum values; The upper and lower edges of a box are the quartiles 

(25% and 75% data). The line inside a box indicates the average value, which is the same as 

Table 5. The model was trained by IBSR18
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Fig. 10. 
Inter-dataset Hausdorff distance measures in mm, on 28 LONI28 volumes for extracting the 

eight subcortical structures (smaller is better). We denote the automated segmented result as 

W* and the ground truth as W
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Fig. 11. 
Inter-dataset Mean distance measures in mm, on 28 LONI28 volumes for extracting the 

eight subcortical structures (smaller is better). The standard deviations are shown in 

parentheses
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Fig. 12. 
Box plots of the Dice coefficients of the generative model based deformable template 

approach (gmDT) and our method on LONI28. The top and bottom ends of a vertical line 

are the maximum and minimum values; the upper and lower edges of a box are the quartiles 

(25 % and 75 % ranked data). The line inside a box indicates the average value
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Fig. 13. 
Typical examples of the proposed brain segmentation method on different datasets. We use 

2D slices of similar brain locations for comparison. Slice (a) is from LPBA40 to show the 

original imaging conditions of the training dataset. For clear comparison, these slices shown 

were skull-stripped and scaled to similar size. These four sets contain totally more than 

1,000 volumes, and all the results are obtained by the identical system without parameter 

tuning
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Table 1

Datasets used in this study. Note that we only use 14 subcortical structures in IBSR18 out of the 84 that are 

available

Dataset Number of labels Role in the study

IBSR18 84 (cortical+subcortical) Training, Testing

LPBA40 56 (cortical+subcortical) Training, Testing

LONI28 8 (subcortical) Testing

ADNI980 0 Testing
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Table 5

Inter-dataset measures (Dice coefficients) on 40 LPBA40 volumes for extracting the six subcortical structures

Caudate Putamen Hippocampus

FreeSurfer 0.65(0.040) 0.64(0.105) 0.57(0.029)

FSL 0.63(0.063) 0.79(0.042) 0.53(0.043)

DM 0.73(0.058) 0.69(0.083) 0.58(0.037)

gmDT 0.74(0.064) 0.79(0.035) 0.57(0.029)

Our Method 0.77(0.045) 0.80(0.035) 0.61(0.029)

All values are the averages of the corresponding measures of the left and right structures, and the standard deviations are shown in parentheses. The 
model was trained from IBSR18. DM is the discriminative method and gmDT is our generative model based deformable template approach. The p-

values between our method and gmDT are 1.58 × 10−5 (Caudate), 0.0135 (Putamen), and 4.87 × 10−14 (Hippocampus)
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